Frozen and broadband slow light in coupled periodic nanowire waveguides.
نویسندگان
چکیده
We develop novel designs enabling slow-light propagation with vanishing group-velocity dispersion ("frozen light") and slow-light with large delay-bandwidth product, in periodic nanowires. Our design is based on symmetry-breaking of periodic nanowire waveguides and we demonstrate its vailidy through two- and three-dimensional simulations. The slow-light is associated with a stationary inflection point which appears through coupling between forward and backward waveguide modes. The mode coupling also leads to evanescent modes, which enable efficient light coupling to the slow mode.
منابع مشابه
Slow-light enhanced optical forces between longitudinally shifted photonic-crystal nanowire waveguides.
We reveal that slow-light enhanced optical forces between side-coupled photonic-crystal nanowire waveguides can be flexibly controlled by introducing a relative longitudinal shift. We predict that close to the photonic band edge, where the group velocity is reduced, the transverse force can be tuned from repulsive to attractive, and the force is suppressed for a particular shift value. Addition...
متن کاملSlow-light vortices in periodic waveguides
We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of circulating energy flows or optical vortices. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states having non-vanishing phase velocity inside the Brillouin zone. We also demonstra...
متن کاملFundamental limitations to gain enhancement in periodic media and waveguides.
A common strategy to compensate for losses in optical nanostructures is to add gain material in the system. By exploiting slow-light effects it is expected that the gain may be enhanced beyond its bulk value. Here we show that this route cannot be followed uncritically: inclusion of gain inevitably modifies the underlying dispersion law, and thereby may degrade the slow-light properties underly...
متن کاملCavity mode control in side-coupled periodic waveguides: Theory and experiment
We demonstrate that the modes of coupled cavities created in periodic waveguides can depend critically on the longitudinal shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases as the cavities are brought closer. We show that the longitudinal shift enables flexible control over the funda...
متن کاملWidely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides.
Periodic structures with dimensions on the order of the wavelength of light can tailor and improve the performance of optical components, and they can enable the creation of devices with new functionalities. For example, distributed Bragg reflectors (DBRs), which are created by periodic modulations in a structure's dielectric medium, are essential in dielectric mirrors, vertical cavity surface ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 20 4 شماره
صفحات -
تاریخ انتشار 2012